<新しいページ紹介>
●次回の「手づくりバイオディーゼル燃料セミナー」を11月30日(日曜日)に予定しています。参加者募集中! 詳しくはこちら。

●日本各地の取り組みをまとめた「バイオディーゼル日本地図」をアップしました。

バイオ燃料

バイオディーゼル燃料

自分で作ってみよう! 
バイオディーゼル燃料の作り方

マイクの「1段階 アルカリ方式」
アレックスの「2段階 アルカリ-アルカリ方式」
アレックスの「2段階 酸-アルカリ『Foolproof』方式

燃料製造器も自分で作る!
作り方


香港バイオディーゼル物語
排ガス中のNOxは問題か?
副産物グリセリンの活用法
バイオディーゼル情報集
ディーゼルに将来はあるか?
作物による植物油の収量と特徴
最後の仕上げは泡で洗う
バイオディーゼル燃料を使うときの確認事項
食糧vs燃料?
植物油そのまま燃料

ガソリン車にはエタノール燃料を
エタノール情報集
エタノール燃料はエネルギーを無駄にしているか?

バイオ燃料ML
バイオ燃料のオンライン図書館(英文)
バイオ燃料と燃料作り用具の入手先(英文)



講演・セミナーのご案内
持続可能な食とエネルギーについてお話しします

トップ
メディア掲載とコメント集
手づくり企画の紹介
冒険が始まった経緯
サイトマップ

プロジェクト
地域の自立を目指す
この企画を進める理由
Rural development
Fixing what's broken
都市農園
街が食糧を育て始めた!
有機菜園のススメ
庭で部屋で栄養たっぷりの野菜を育てる方法
土をつくる
すべての健康は土から始まる
小さな農場
自由と自立への道
バイオ燃料
地域で育てるエネルギー
太陽熱コンロ
森と人を救うソーラー・クッカー
森と土と水と
山の危機はみんなの危機
世界の種子
種がなければ食もなし
Appropriate technology
What works and fits
Project vehicles
The workhorses

インターネット
何がそんなに画期的なのか?
Internet interaction
必要な情報を探し出すには

教育企画
教育企画の活用方
バイオ燃料
太陽熱コンロ
空き缶で作る簡単コンロ
超小型風力発電機
電源のいらないローテク・ラジオ
段ボール箱の活用法
絹の姉妹
靴箱で蚕を育てる
学校菜園
土をつくる
池もつくる
手づくり天然蚊よけスプレー
ネットで参加できる教育プログラム
ネットで使える教育関係情報集


連絡先
手づくり企画「ジャーニー・トゥ・フォーエバー」
http://journeytoforever.org/jp/
〒622-0291京都府船井郡
丹波町郵便局 私書箱6号
キース・アディソン (英語)
平賀緑 (日本語&英語)
midori@journeytoforever.org

ジャーニー・トゥ・フォーエバーを応援してください!
今後ともプロジェクトを進めていくためにご支援いただけましたら幸いです。ありがとうございました。

食糧問題・食料問題のページ
〜100億人分の食糧をまかなえる世界で
なぜ8億の人が飢えるのか〜

作物による植物油の収量と特徴

植物油の収量順に並べた一覧

-- alphabetical order
Other oil crops
Oils and esters characteristics
Iodine Values
-- High Iodine Values
-- Talking about the weather
Quality standard for rapeseed oil fuel
Cetane Numbers
National standards for biodiesel
Fuel properties of fats and oils
Fuel properties of esters

植物油の収量

バイオディーゼル燃料の生産量は植物油の約8割


注意: この数値は控えめな推量。実際の収量は栽培条件などにより大きな幅がある。

植物油の収量順に並べた一覧
作物 1ヘクタールあたりの油収量(kg) 1ヘクタールあたりの油収量(リッター) 1エーカーあたりの油収量(ポンド) 1エーカーあたりの油収量(米国ガロン)
トウモロコシ 145 172 129 18
カシューナッツ 148 176 132 19
オーツ(カラス麦) 183 217 163 23
ルピナス 195 232 175 25
ケナフ 230 273 205 29
キンセンカの乾燥花 256 305 229 33
綿花 273 325 244 35
ヘンプ麻 305 363 272 39
大豆 375 446 335 48
コーヒー豆 386 459 345 49
亜麻仁 402 478 359 51
ヘーゼルナッツ 405 482 362 51
トウダイグサ(euphorbia) 440 524 393 56
カボチャの種 449 534 401 57
コリアンダー 450 536 402 57
カラシナの種 481 572 430 61
camelina(アマナズナ属) 490 583 438 62
ゴマ 585 696 522 74
紅花 655 779 585 83
696 828 622 88
油桐 790 940 705 100
ヒマワリ 800 952 714 102
ココア(カカオ) 863 1026 771 110
落花生 890 1059 795 113
ケシ 978 1163 873 124
菜種 1000 1190 893 127
オリーブ 1019 1212 910 129
ヒマの種 1188 1413 1061 151
ペカンナッツ 1505 1791 1344 191
ホホバ 1528 1818 1365 194
珊瑚油桐(サンゴアブラギリ) 1590 1892 1420 202
マカダミアナッツ 1887 2246 1685 240
ブラジルナッツ 2010 2392 1795 255
アボカド 2217 2638 1980 282
ココナッツ 2260 2689 2018 287
ギネアアブラヤシ(パーム油) 5000 5950 4465 635

油が採れる他の作物

Purdue大学の新作物・植物センター(the Center for New Crops & Plant Products)による「NewCrop SearchEngine」。キーワード「oil」で検索すると200件ものヒットがかえってくる。検索結果は詳細データにリンクされている。
http://www.hort.purdue.edu/newcrop/SearchEngine.html

Plants For A Future(未来のための植物)」データベース検索
用途別に検索(Search by Use)か、もしくはその他の用途(Other Use)に「oil」と入力して検索すると460件がヒットする。検索結果は詳細データにリンクされている。.
http://www.ibiblio.org/pfaf/D_search.html

油の種類による油脂とエステルの特徴

油およびエステルの特性
油の種類
溶解範囲(摂氏度)
ヨウ素価
セタン価
油脂
メチルエステル
エチルエステル
菜種油(h. eruc.)
5
0
-2
97 - 105
55
菜種油(i. eruc.)
-5
-10
-12
110 - 115
58
ヒマワリ油
-18
-12
-14
125 - 135
52
オリーブ油
-12
-6
-8
77 - 94
60
大豆油
-12
-10
-12
125 - 140
53
綿花油
0
-5
-8
100 - 115
55
トウモロコシ油
-5
-10
-12
115 - 124
53
椰子油
20 - 24
-9
-6
8 - 10
70
パーム核油
20 - 26
-8
-8
12 - 18
70
パーム油
30 - 38
14
10
44 - 58
65
パームオレイン油
20 - 25
5
3
85 - 95
65
パームステアリン油
35 - 40
21
18
20 - 45
85
牛脂(タロー)
35 - 40
16
12
50 - 60
75
ラード
32 - 36
14
10
60 - 70
65

ヨウ素価

ようそ‐か【沃素価】
油脂100グラムが吸収する沃素のグラム数。この値が大きい脂肪酸は、不飽和脂肪酸を多く含み、不飽和度が高い。沃素価100以下を不乾性油、100〜130を半乾性油、130以上を乾性油という(広辞苑第5版より)


化学的にいうと、すべての植物性・動物性の油脂は3個の脂肪酸がグリセリンに結合したトリグリセリド。 Chemically, vegetable and animal oils and fats are triglycerides, glycerol bound to three fatty acids. Animal tallow/lard is saturated, meaning that in the fatty acid portion, all the carbon atoms are bound to two hydrogen atoms, and there are no double bonds. This allows the chains of fatty acids to be straighter and more pliable so they harden at lower temperatures (that's why lard is a solid).

As you increase the number of double bonds in a fatty acid, you reduce that ability for oils to gain a conformation that would make them solid, so they remain liquid. To picture it, imagine that you put a bunch of strings in a line. Now tie knots in various places on the strings and see how they don't fit together tightly.

To test a vegetable oil to see how many double bonds it has (how unsaturated it is) iodine is introduced to the oil. The iodine will attach itself over a double bond to make a single bond where an iodine atom is now attached to each carbon atom in that double bond. Higher iodine numbers do not refer to the amount of iodine in the oil, but rather the amount of iodine needed to "saturate" the oil, or break all the double bonds. Oils for the most part contain only trace amounts of iodine naturally.

How does this translate to biodiesel? When the fatty acid chains are broken from the glycerol and then re-esterified to methyl or ethyl groups, those fatty acids still have their double bonds. That means that the more double bonds, the lower the cloud point because they resist solidifying at lower temperatures. So, for instance, if you use lard or tallow, the biodiesel will solidify at a higher temperature because the fat it was formed from also solidified at a higher temperature.

(Image and text compliments of Jeff Welter)

High Iodine Values

[The information below refers to straight vegetable oil fuel, but is also useful to show which oils are suitable for making biodiesel and which may not be suitable.]

-- From "Waste Vegetable Oil as a Diesel Replacement Fuel" by Phillip Calais, Environmental Science, Murdoch University, Perth, Australia, and A.R. (Tony) Clark, Western Australian Renewable Fuels Association Inc.
http://www.shortcircuit.com.au/warfa/paper/paper.htm

Many vegetable oils and some animal oils are 'drying' or 'semi-drying' and it is this which makes many oils such as linseed, tung and some fish oils suitable as the base of paints and other coatings. But it is also this property that further restricts their use as fuels.

Drying results from the double bonds (and sometimes triple bonds) in the unsaturated oil molecules being broken by atmospheric oxygen and being converted to peroxides. Cross-linking at this site can then occur and the oil irreversibly polymerises into a plastic-like solid.

In the high temperatures commonly found in internal combustion engines, the process is accelerated and the engine can quickly become gummed-up with the polymerised oil. With some oils, engine failure can occur in as little as 20 hours.

The traditional measure of the degree of bonds available for this process is given by the 'Iodine Value' (IV) and can be determined by adding iodine to the fat or oil. The amount of iodine in grams absorbed per 100 ml of oil is then the IV. The higher the IV, the more unsaturated (the greater the number of double bonds) the oil and the higher is the potential for the oil to polymerise.

While some oils have a low IV and are suitable for use as fuel without any further processing other than extraction and filtering, the majority of vegetable and animal oils have an IV which may cause problems if used as a neat fuel. Generally speaking, an IV of less than about 25 is required if the neat oil is to be used for long term applications in unmodified diesel engines and this limits the types of oil that can be used as fuel. The table below lists various oils and some of their properties.

The IV can be easily reduced by hydrogenation of the oil (reacting the oil with hydrogen), the hydrogen breaking the double bond and converting the fat or oil into a more saturated oil which reduces the tendency of the oil to polymerise. However this process also increases the melting point of the oil and turns the oil into margarine.

As can be seen from the table below, only coconut oil has an IV low enough to be used without any potential problems in an unmodified diesel engine. However, with a melting point of 25 deg C, the use of coconut oil in cooler areas would obviously lead to problems. With IVs of 25-50, the effects on engine life are also generally unaffected if a slightly more active maintenance schedule is maintained such as more frequent lubricating oil changes and exhaust system decoking. Triglycerides in the range of IV 50-100 may result in decreased engine life, and in particular to decreased fuel pump and injector life. However these must be balanced against greatly decreased fuel costs (if using cheap, surplus oil) and it may be found that even with increased maintenance costs this is economically viable.

油ごとの融解温度とヨウ素価
油脂の種類
おおよその融解温度(摂氏度)
ヨウ素価
椰子油
25
10
パーム核油
24
37
羊肉油脂(タロー)
42
40
牛脂(タロー)
-
50
パーム油
35
54
オリーブ油
-6
81
ひまし油
-18
85
ピーナッツ油
3
93
菜種油
-10
98
綿花油
-1
105
ヒマワリ油
-17
125
大豆油
-16
130
桐油
-2.5
168
亜麻仁油
-24
178
鰯油
-
185

From "Waste Vegetable Oil as a Diesel Replacement Fuel" by Phillip Calais, Environmental Science, Murdoch University, Perth, Australia, and A.R. (Tony) Clark, Western Australian Renewable Fuels Association Inc.
http://www.shortcircuit.com.au/warfa/paper/paper.htm

Note: More Iodine Values in charts below.

Talking about the weather

Generally, the higher an oil's Iodine Value, the lower the temperature at which it solidifies. Different terms are used for this -- melting point (MP), cloud point (CP), cold filter plugging point (CFPP), and pour point (PP). In practice they all mean about the same. It matters with both SVO systems using straight vegetable oil as fuel and to biodiesel, but more so to SVO systems.

As vegetable oils cool, wax crystals form, and the oil goes cloudy. The crystals can form a film on filters, blocking the flow of fuel. The temperature at which this occurs varies widely according to the oil type, from well below freezing point to well above freezing point.

It even varies for the same type of oil: new food-grade rapeseed or canola oil is usually "winterized" so that it doesn't cloud in the fridge and put people off. It will work nicely down to -10シC, but once it emerges from the fryer, partly hydrogenated, degraded and probably containing some tallow from the food fried in it, it will only stay liquid and not plug filters down to freezing point or just above.

If you want to use an SVO system in a cold climate, you need a system configured to deal with the CFPP factor, and you need oil with a low CFPP. Coconut oil, palm oil, tallow and lard won't do, rapeseed or canola, soy, sunflower or corn oil are much better.

But if you live in a hot climate, cloud points won't bother you and the opposite is true: coconut and palm oil, tallow and lard all have higher cetane numbers than the others, and lower Iodine Values.

For biodiesel, the same applies, but to a lesser degree -- with most oils and fats, converting it into biodiesel tends to lower the CFPP. Biodiesel made with ethanol usually has a lower CFPP than biodiesel made with methanol. Additives and fuel-line heaters can solve the problem, and so can adding a proportion of petro-diesel or kerosene (up to 30% is usually recommended).

Quality Standard for Rapeseed Oil

Quality Standard for Rapeseed Oil as a Fuel (RK-Qualit閣sstandard)
Properties /Contents
Unit
Limiting Value
Testing Method
min.
max.
Characteristic properties for Rapeseed 0il
Density (15シC)
kg/m3
900
930
DIN EN ISO 3675
DIN EN ISO 12185
Flash Point
by P.-M.
シC
220
-
DIN EN 22719
Calorific Value
kJ/kg
35000
-
DIN 51900-3
Kinematic Viscosity (40シC)
mm2/S
-
38
DIN EN ISO 3104
Low Temperature Behaviour
-
-
-
Rotational Viscometer (testing conditions will be developed)
Cetane Number
-
-
-
Testing method will be reviewed
Carbon Residue
Mass-%
-
0.40
DIN EN ISO 10370
Iodine Number
g/100 g
100
120
DIN 53241-1
Sulphur Content
mg/kg
-
20
ASTM D5453-93
Variable properties
Contamination
mg/kg
-
25
DIN EN 12662
Acid Value
mg KOH/g
-
2.0
DIN EN ISO 660
Oxidation Stability (110シC)
h
5.0
-
IS0 6886
Phosphorus Content
mg/kg
-
15
ASTM D3231-99
Ash Content
Mass-%
-
0.01
DIN EN ISO 6245
Water Content
Mass-%
-
0.075
pr EN ISO 12937

Abteilung Technologie nachwachsender Rohstoffe
Arbeitsgruppe Pflanzen嗟e
Department of Technology, regenerating raw materials
Working Group On Vegetable Oils
Dr. Bernhard Widmann

LTV-Work-Session on Decentral Vegetable Oil Production, Weihenstephan
http://dec2.tec.agrar.tu-muenchen.de/pflanzoel/rkstandard_e.html

Comparison of properties of diesel, canola oil and commercial US biodiesel
.
Diesel
Canola Oil
Biodiesel
Density kgL-1 @ 15.5 deg C
0.84
0.92
0.88
Calorific value MJL-1
38.3
36.9
33-40
Viscosity mm2s-1 @ 20 deg C
4-5
70
4-6
Viscosity mm2s-1 @ 40 deg C
4-5
37
4-6
Viscosity mm2s-1 @ 70 deg C
10
-
-
Cetane number
45
40-50
45-65

From "Waste Vegetable Oil as a Diesel Replacement Fuel" by Phillip Calais, Environmental Science, Murdoch University, Perth, Australia, and A.R. (Tony) Clark, Western Australian Renewable Fuels Association Inc.
http://www.shortcircuit.com.au/warfa/paper/paper.htm

1. Sims, R. Yields, Costs and Availability of Natural Oils/Fats as Diesel Fuel Substitutes, Report No LF2021 for the Liquid Fuels Trust Board, Wellington (NZ) 1982
2. Environment Australia (National Heritage Trust) (2000b). Setting National Fuel Quality Standards ミ Paper 2 - Proposed Standards for Fuel Parameters (Petrol and Diesel), Canberra
3. Beer, T., Grant, T., Brown, R., Edwards, J., Nelson, P., Watson, H., Williams, D. (2000) Life-Cycle Emission Analysis of Alternative Fuels for Heavy Vehicles. CSIRO, Australia

Cetane numbers

Cetane numbers rate the ignition properties of diesel fuels, just as octane numbers determine the quality and value of gasoline (petrol). It's a measure of a fuel's willingness to ignite when it gets compressed. The higher the cetane number, the more efficient the fuel. Biodiesel has a higher cetane number than petrodiesel because of its oxygen content.

From the Lubrizol Corporation:
http://www.lubrizol.com/ReadyReference/GasolineDieselFuels/default.htm

Ignition Quality or Cetane Number -- This factor influences ease of starting, duration of white smoking after start-up, drivability before warm-up and intensity of diesel knock at idle. Studies have correlated ignition quality with all regulated emissions. As ignition delay is reduced, the combustion process starts earlier and emissions (primarily carbon monoxide and hydrocarbons) are reduced.

Ignition delay is measured by the Cetane Number (CN) test (ASTM D 613), which uses a single-cylinder, variable compression ratio engine analogous to the Octane Number engine. In this case, the ignition delay of the test fuel is measured at a fixed compression ratio. This result is compared with the results from standard reference fuels consisting of blends of n-cetane and heptamethylnonane.

Diesel engines vary widely in their cetane requirements, and there is no commonly recognized way to measure this value. In general, the lower an engine's operating speed, the lower the CN of the fuel it can use. Large marine engines can tolerate fuels with CNs as low as 20, while some manufacturers of high-speed passenger car diesel engines specify 55 CN fuel.

National standards for biodiesel

Comparison of different national standards for biodiesel
-
Austria
Czech Republic
France
Germany
Italy
Sweden
USA
Standard /
Specification
ON C1191
CSN 65 6507
Journal Officiel
DIN V 51606
UNI 10635
SS 155436
ASTM PS121-99
Date
July 1997
Sep 1998
Sep 1997
Sep 1997
April 1997
Nov 1996
July 1999
Application
FAME
RME
VOME
FAME
VOME
VOME
FAMAE
Density
15。C g/cm
0.85 - 0.89
0.87 - 0.89
0.87 - 0.90
0.875 - 0.90
0.86 -0.90
0.87 - 0.90
-
Viscos. 40。C mm2/s
3.5-5.0
3.5-5.0
3.5-5.0
3.5-5.0
3.5-5.0
3.5-5.0
1.9-6.0
Distillat.
95% 。C
-
-
<360
-
<360
-
-
Flashpoint 。C
>100
>110
>100
>110
>100
>100
>100
CFPP 。C
(cold filter plugging point)
0/-15
-5
-
0/-10/-20
-
-5
-
Pour point 。C
-
-
<-10
-
<0/
<-15
-
-
Sulfur
% mass
<0.02
<0.02
-
<0.01
<0.01
<0.001
<0.05
CCR 100%
% mass
<0.05
<0.05
-
<0.05
-
-
<0.05
10% dist. resid.
% mass
-
-
<0.3
-
<0.5
-
-
Sulfated ash
% mass
<0.02
<0.02
-
<0.03
-
-
<0.02
(Oxid) Ash
% mass
-
-
-
-
<0.01
<0.01
-
Water mg/kg
-
<500
<200
<300
<700
<300
<0.05%
Total contam. mg/kg
-
<24
-
<20
-
<20
-
Cu-Corros. 3h/50。C
-
1
-
1
-
-
<No.3
Cetane No.
>49
>48
>49
>49
-
>48
>40
Neutral. No.
mgKOH/g
<0.8
<0.5
<0.5
<0.5
<0.5
<0.6
<0.8
Methanol
% mass
<0.20
-
<0.1
<0.3
<0.2
<0.2
-
Ester content
% mass
-
-
>96.5
-
>98
>98
-
Monoglyceride.
% mass
-
-
<0.8
<0.8
<0.8
<0.8
-
Diglyceride
% mass
-
-
<0.2
<0.4
<0.2
<0.1
-
Triglyceride
% mass
-
-
<0.2
<0.4
<0.1
<0.1
-
Free glycerol
% mass
<0.02
<0.02
<0.02
<0.02
<0.05
<0.02
<0.02
Total glycerol
% mass
<0.24
<0.24
<0.25
<0.25
-
-
<0.24
Iodine No.
<120
-
<115
<115
-
<125
-
C18:3 and high. unsat.acids
% mass
<15
-
-
-
-
-
-
Phosphor
mg/kg
<20
<20
<10
<10
<10
<10
-
Alkalinity mg/kg
-
<10
<5
<5
-
<10
-

RME: Rapeseed oil methyl ester
FAME: Fatty acid methyl ester
VOME: Vegetable oil methyl ester
FAMAE: Fatty acid mono alkyl ester

-- From "Lifecycle analysis for alternative fuels", CSIRO Australia, 1998
http://www.dar.csiro.au/res/ggss/Life_Cycle_Analysis_for_Alternative_Fuels.htm

CEN Diesel Fuel Specification (EN 590:1993):
http://journeytoforever.org/energiaweb/en590en.htm

New US Standard:
The US ASTM PS121-99 was a provisional standard, now replaced by ASTM D-6751.

ASTM D-6751
Flash point (closed cup)
130。C min. (150。C average)
Water and sediment
0.050% by vol., max.
Kinematic viscosity at 40。C
1.9-6.0 mm2/s
Sulfated ash
0.020% by mass, max.
Sulfur
0.05% by mass, max.
Cetane
47 min.
Carbon residue
0.050% by mass, max.
Total glycerine (free glycerine and unconverted glycerides combined)
0.240% by mass, max.
Phosphorous content
0.001% by mass, max.

Fuel properties of fats and oils

Fuel-related properties and iodine values of various fats and oils
Oil or Fat
Iodine Value
CN
HG (kJ/kg)
Viscosity (mm 2/s)
CP (deg C)
PP (deg C)
FP (deg C)
Babassu
10-18
38
-
-
-
-
-
Castor
82-88
?
39500
297 (38 C)
-
-31.7
260
Coconut
6-12
-
-
-
-
-
-
Corn
103-140
37.6
39500
34.9 (38 C)
-1.1
-40.0
277
Cottonseed
90-119
41.8
39468
33.5 (38 C)
1.7
-15.0
234
Crambe
93
44.6
40482
53.6 (38 C)
10.0
-12.2
274
Linseed
168-204
34.6
39307
27.2 (38 C)
1.7
-15.0
241
Olive
75-94
-
-
-
-
-
-
Palm
35-61
42
-
-
-
-
-
Peanut
80-106
41.8
39782
39.6 (38 C)
12.8
-6.7
271
Rapeseed
94-120
37.6
39709
37.0 (38 C)
-3.9
-31.7
246
Safflower
126-152
41.3
39519
31.3 (38 C)
18.3
-6.7
260
High-oleic safflower
90-100
49.1
39516
41.2 (38 C)
-12.2
-20.6
293
Sesame
104-120
40.2
39349
35.5 (38 C)
-3.9
-9.4
260
Soybean
117-143
37.9
39623
32.6 (38 C)
-3.9
-12.2
254
Sunflower
110-143
37.1
39575
37.1 (38 C)
7.2
-15.0
274
Tallow
35-48
-
40054
51.15 (40 C)
-
-
201
No. 2 DF
-
47
45343
2.7 (38 C)
-15.0
-33.0
52

CN = cetane number; CP = cloud point, PP = pour point, FP = flash point.
Iodine values combined from Applewhite, T.H., in Kirk-Othmer, Encyclopedia of Chemical Technology; Third Ed.; John-Wiley & Sons: New York, NY, 1980, Vol. 9; pp. 795-811; and Gunstone, F.D.; Harwood, J.L.; Padley, F.B. Lipid Handbook; Second Ed.; Chapman & Hall: London, 1994.
Fuel properties from Goering, C.E.; Schwab, A.W.; Daugherty, M.J.; Pryde, E.H.; Heakin, A.J. Trans. ASAE 1982, 25, 1472-1477 & 1483.
All tallow values from Ali, Y.; Hanna, M.A.; Cuppett, S.L. J. Am. Oil Chem. Soc. 1995, 72, 1557-1564 (no CN given, calcd. cetane index 40.15).

(From: "Biodiesel: The Use of Vegetable Oils and Their Derivatives as Alternative Diesel Fuels", G. Knothe, R.O. Dunn, and M.O. Bagby, in Fuels and Chemicals from Biomass, Washington, D.C.: American Chemical Society. Download full-text article (MS Word, 337Kb):
http://www.biodiesel.org/reports/GEN-162.doc

Fuel properties of esters

Fuel-related physical properties of esters of oils and fats
Ester
CN
HG
(kJ/kg)
Viscosity
(mm2/s)
CP
(deg C)
PP
(deg C)
FP 1
(deg C)
Methyl
Cottonseed 2
51.2
-
6.8 (21deg )
-
-4
110
Rapeseed 3
54.4
40449
6.7 (40deg )
-2
-9
84
Safflower 4
49.8
40060
-
-
-6
180
Soybean 5
46.2
39800
4.08 (40deg )
2
-1
171
Sunflower 6
46.6
39800
4.22 (40deg )
0
-4
-
Tallow 7
-
39949
4.11 (40deg )
12
9
96
Ethyl
Palm 8
56.2
39070
4.5 (37.8deg )
8
6
19
Soybean 5
48.2
40000
4.41 (40deg )
1
-4
174
Tallow 9
-
-
-
15
12
-

CN = cetane number; CP = cloud point, PP = pour point, FP = flash point.
1. Some flash points are very low. These may be typographical errors in the references or the materials may have contained residual alcohols.
2. Geyer, S.M.; Jacobus, M.J.; Lestz, S.S. Trans. ASAE 1984, 27, 375-381.
3. Peterson, C.L.; Korus, R.A; Mora, P.G.; Madsen, J.P. Trans. ASAE, 1987, 30, 28-35.
4. Isiig殲, A.; Karaosmanolu, F.; Aksoy, H.A.; Hamdallahpur, F.; G殕der, .L. Appl. Biochem. Biotechnol. 1994, 45-46, 93-102.
5. Bagby, M.O. In Proc. 9th Int. Conf. Jojoba Uses, 3rd Int. Conf. New Industr. Crops Prod.; Princen, L.H., Rossi, C., Eds.; Assoc. Advancem. Industr. Crops. publ. 1996; pp. 220-224.
6. Kaufman, K.R.; Ziejewski, M. Trans. ASAE 1984, 27, 1626-1633.
7. Ali, Y.; Hanna, M.A.; Cuppett, S.L. J. Am. Oil Chem. Soc. 1995, 72, 1557-1564.
8. Avella, F.; Galtieri, A.; Fiumara, A. Riv. Combust. 1992, 46, 181-188.
9. Nelson, L.A.; Foglia, T.A.; Dunn, R.O.; Marmer, W.N. submitted for publication.

(From: "Biodiesel: The Use of Vegetable Oils and Their Derivatives as Alternative Diesel Fuels", G. Knothe, R.O. Dunn, and M.O. Bagby, in Fuels and Chemicals from Biomass, Washington, D.C.: American Chemical Society. Download full-text article (Acrobat file, 901 Kb):
http://www.biodiesel.org/resources/
reportsdatabase/reports/gen/gen-162.pdf


Biofuels
Biofuels Library
Biofuels supplies and suppliers

Biodiesel
Make your own biodiesel
Mike Pelly's recipe
Two-stage biodiesel process
FOOLPROOF biodiesel process
Biodiesel processors
Biodiesel in Hong Kong
Nitrogen Oxide emissions
Glycerine
Biodiesel resources on the Web
Do diesels have a future?
Vegetable oil yields and characteristics
Bubble washing
Biodiesel and your vehicle
Food or fuel?
Straight vegetable oil as diesel fuel

Ethanol
Ethanol resources on the Web
Is ethanol energy-efficient?